De-risking new cancer therapeutics with *in vitro* platelet assays: comparing the effects of BH3-mimetics on platelet viability

N. Dovlatova, P. Cato, W. Tomlinson, C. Jewell, A. Johnson, E. Rendall, B. Humphries Platelet Services Ltd, Nottingham, UK

Background

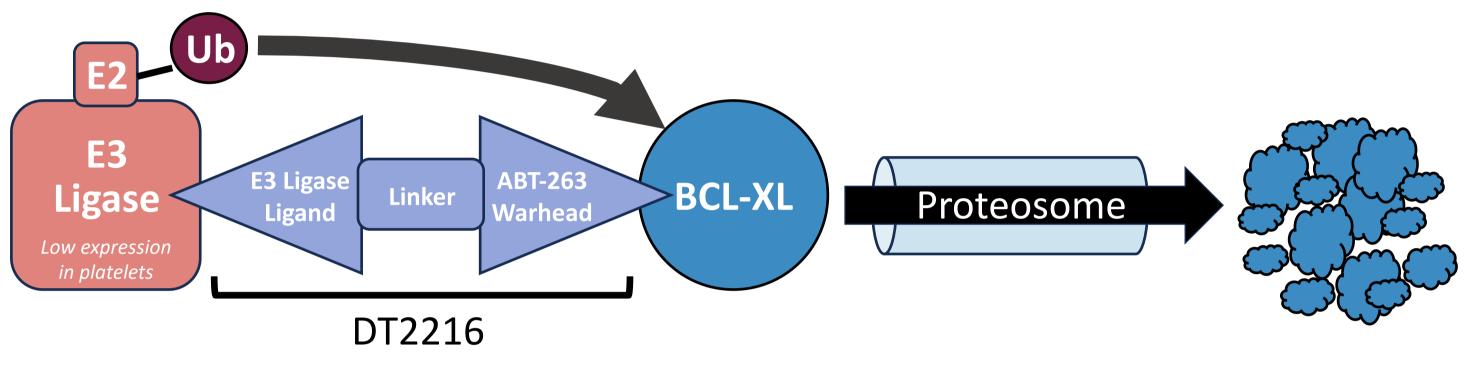
Following the successful development of ABT-199 (Venetoclax) for the treatment of chronic lymphocytic leukaemia (CLL) and acute myeloid leukaemia (AML), other BH3-mimetics that target BCL-XL have been investigated to treat solid tumours but have shown on-target and dose-limiting thrombocytopenia (diagram 1)^{1,2}.

The PROTAC (Proteolysis Targeting Chimera) DT2216, designed to avoid the on-target platelet toxicity of ABT-263 (Navitoclax, diagram 2), was initially reported to be platelet sparing *in vitro*,^{3,4} but later platelet toxicity was reported in mouse, rat and cynomolgus monkey models⁵.

Conclusion

Using BH3-mimetics with known effects on platelet viability (ABT-199, ABT-263, ABT-737), we have demonstrated the suitability of sensitive, higher throughput *in vitro* platelet assays for predicting *in vivo* platelet toxicity.

Furthermore, in contrast with *in vitro* data in the literature, DT2216 was found to decrease platelet viability and increase caspase 3/7 activity in our *in vitro* platelet toxicity tests. These findings better mirror the early results of *in vivo* studies in animal models.

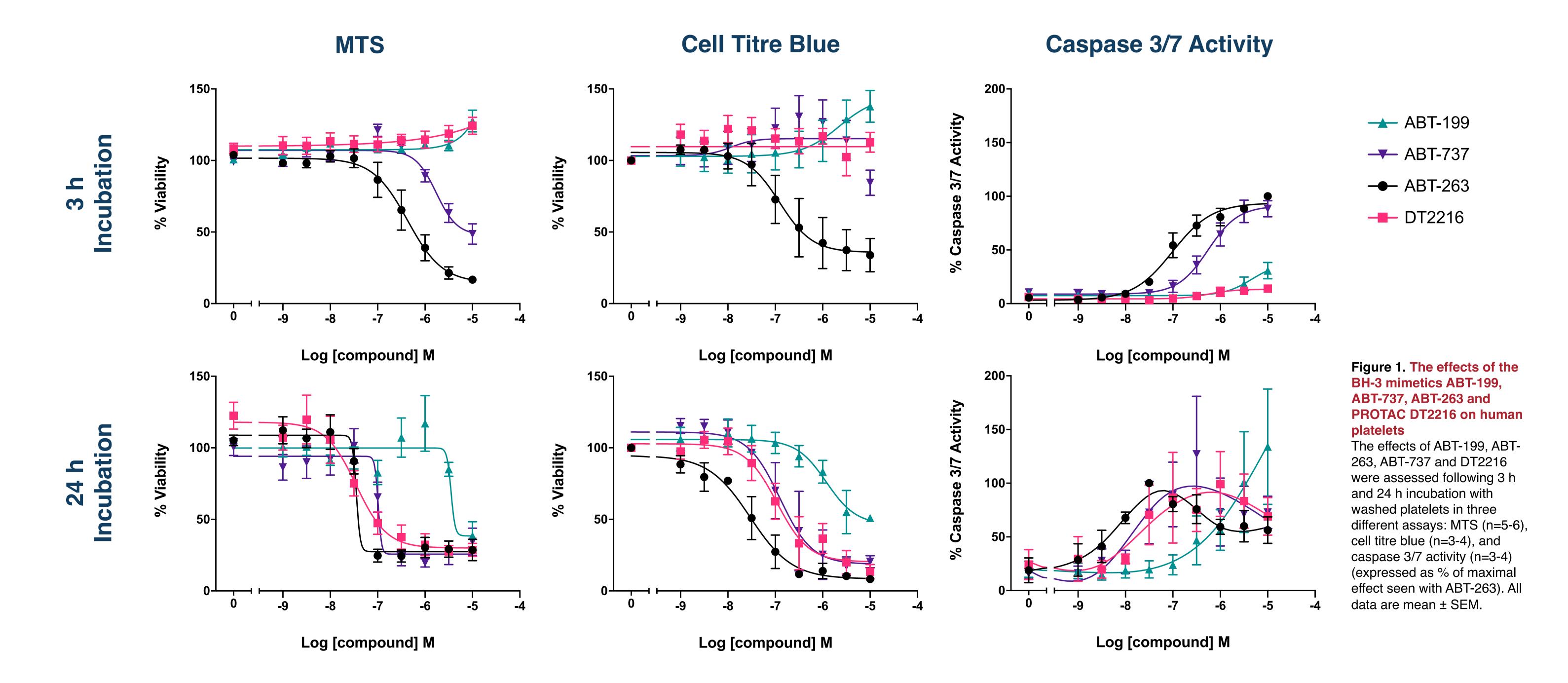

More sensitive and reliable *in vitro* platelet viability assays are required to better predict *in vivo* toxicity in early drug discovery and development.

Improved *in vitro* cytotoxicity assays with the capability for screening BH3mimetics and other therapeutics in development are available to help de-risk the selection and progression of new drug candidates in drug development.

Modes of Action

Diagram 1. Summary of the BH3-mimetics and DT2216 and their anti-apoptotic protein targets The more specific ABT-199 targets BCL-2 only while ABT-737, ABT-263 and DT2216 target BCL-2, BCL-XL and BCL-W.

Diagram 2. Schematic representing the PROTAC DT2216 interaction with the anti-apoptotic protein target BCL-XL DT2216 is comprised of a modified ABT-263 warhead, that binds anti-apoptotic proteins, and an E3 ligase ligand. Recruitment of E3 ligase to the target protein leads to the transfer of ubiquitin (Ub) and degradation of the target protein.


Results

Effects of the compounds ABT-199, ABT-263, ABT-737, and DT2216 were assessed in human washed platelets at 37°C, initially using the MTS assay. A subsequent study was performed with cell titre blue and caspase 3/7 activity assays, as these can be multiplexed.

- The pan-BCL inhibitors ABT-737 and ABT-263 both reduced platelet viability and increased caspase 3/7 activity after 3 h treatment and their
- Although ABT-199 had little to no effect on platelet viability after 3 h, slightly elevated levels of caspase 3/7 activity were observed. A reduction in platelet viability was measured following 24 h treatment and this was corroborated by increased levels of caspase 3/7 activity.

potency increased at 24 h.

- DT2216 was shown to reduce platelet viability and increase caspase 3/7 activity following 24 h incubation.
- The order of potency in cell titre blue and caspase 3/7 activity following 24 h incubation was: ABT-263 > DT2216 = ABT-737 > ABT-199

References: (1) Bcl-x_L-inhibitory BH3 mimetics (ABT-737 or ABT-263) and the modulation of cytosolic calcium flux and platelet function (S.M. Schoenwaelder & S.P. Jackson 2012). (2) BH3-mimetics: recent developments in cancer therapy (P.A. Townsend et al., 2021), (3) A selective BCL-X_L PROTAC degrader achieves safe and potent antitumor activity (S. Khan et al., 2019), (4) DT2216-a Bcl-xL-specific degrader is highly active against Bcl-xL-dependent T cell lymphomas (Y. He et al., 2020). (5) Discovery of BCL-XL heterobifunctional degrader with potentially improved therapeutic window and minimal platelet toxicity for hematological malignancies (Y. Xie et al., 2023).

www.plateletservices.com l info@plateletservices.com